DATA SHEET

Multiplex PCR Master

Master mix for multiplex PCR

Cat. No.	Amount
PCR-110S	2 x 1,25 ml (2x conc.)
PCR-110L	10 x 1,25 ml (2x conc.)

For in vitro use only!

Shipping: shipped on blue ice

Storage Conditions: store at -20 °C

Additional Storage Conditions: avoid freeze/thaw cycles

Shelf Life: 12 months

Form: liquid

Concentration: 2x conc.

Description:

Multiplex PCR Master is specially designed for the set-up of multiplex PCR reactions. It contains an optimized composition of polymerase, nucleotides, $MgCl_2$ and stabilizing components in a specifically developed buffer system allowing the parallel amplification of a multitude of fragments in a single PCR assay.

The master mix contains all reagents (except primer and template) in a 2x concentrated ready-to-use solution.

The kit is recommended for use in routine PCR reactions and highly suitable for multiple target gene amplification in a single tube.

The high specificity and sensitivity of the mix is achieved by a chemically inhibited hot-start polymerase. Its activity is blocked at ambient temperature preventing the extension of nonspecifically annealed primers and primer-dimer formations at low temperatures during PCR setup.

Content:

2x Multiplex PCR Master (red cap)

master mix containing Hot Start Taq polymerase, nucleotides, optimized reaction buffer and stabilizers

PCR grade water (white cap)

Recommended 50 µl PCR assay:

Prepare a master mix of all components except template to reduce pipetting errors. A reaction volume of 20-50 μ l per assay is recommended for most PCR cyclers. Pipet with sterile filter tips and perform the setup in an area separate from DNA preparation or analysis. No-template controls should be included in all amplifications.

DATA SHEET

Multiplex PCR Master

Master mix for multiplex PCR

component	stock conc.	final conc.	50 μl assay
Multiplex PCR Master	2x	1x	25 μl
forward primer 1	10 μΜ	400 nM	2 μl
reverse primer 1	10 μΜ	400 nM	2 μl
forward primer 2	10 μΜ	400 nM	2 μl
reverse primer 2	10 μΜ	400 nM	2 μl
forward primer	10 μΜ	400 nM	2 μl
reverse primer	10 μΜ	400 nM	2 μl
Template a) animal genomic DNA b) bacterial genomic DNA c) plasmid and lambda DNA	-	-	a) 10-200 ng b) 1 - 50 ng c) 1 - 5 ng
PCR-grade water	-	-	fill up to 50 µl

2)Cycle numbers are recommended as following:

animal genomic DNA
 50 mg 25 50 mg

10 - 50 ng: 35 - 50 cycles

50 - 200 ng: 30 - 45 cycles

bacterial genomic DNA

1 - 5 ng: 35 - 50 cycles

5 - 50 ng: 30 - 40 cycles

plasmid and lambda DNA

1 - 5 ng: 30 - 40 cycles

³⁾The elongation time depends on the length of the fragments to be amplified. A time of 1 min/kb is recommended.

For optimal specificity and amplification an individual optimization of the recommended parameters may be necessary for each new template DNA and/or primer pair.

Exclusively distributed in Japan by Greiner BioOne

Recommended cycling conditions:

Initial	95 °C	12 min	1x
denaturation			
Denaturation	95 °C	30 sec	30 - 50x ²⁾
Annealing ¹⁾	58 - 64 °C	40 sec	30 - 50x ²⁾
Elongation ³⁾	72 °C	1 min/kb	30 - 50x ²⁾
Final elongation	72 °C	5 min	1x
Elongalion	I		

¹⁾The optimal annealing temperature (AT) can be calculated for each primer as following:

 $AT = T_m - 5 °C with T_m = 2 °C x (A+T) + 4 °C x (G+C)$

Please note that primers should be designed to show minimal differences in there melting temperatures $(T_{\rm m})$.